A High-Order, Symplectic, Finite-Difference Time-Domain Scheme for Bioelectromagnetic Applications within the Mother/Fetus Model

نویسندگان

  • YingJie Gao
  • HongWei Yang
چکیده

An explicit high-order, symplectic, finite-difference time-domain (SFDTD) scheme is applied to a bioelectromagnetic simulation using a simple model of a pregnant woman and her fetus. Compared to the traditional FDTD scheme, this scheme maintains the inherent nature of the Hamilton system and ensures energy conservation numerically and a high precision. The SFDTD scheme is used to predict the specific absorption rate (SAR) for a simple model of a pregnant female woman (month 9) using radio frequency (RF) fields from 1.5 T and 3 T MRI systems (operating at approximately 64 and 128 MHz, respectively). The results suggest that by using a plasma protective layer under the 1.5 T MRI system, the SAR values for the pregnant woman and her fetus are significantly reduced. Additionally, for a 90 degree plasma protective layer, the SAR values are approximately equal to the 120 degree layer and the 180 degree layer, and it is reduced relative to the 60 degree layer. This proves that using a 90 degree plasma protective layer is the most effective and economical angle to use.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Waveguide Simulation Using the High-order Symplectic Finite-difference Time-domain Scheme

Abstract—The high-order symplectic finite-difference time-domain scheme is applied to modeling and simulation of waveguide structures. First, the perfect electric conductor boundary is treated by the image theory. Second, to excite all possible modes, an efficient source excitation method is proposed. Third, the modified perfectly matched layer is extended to its high-order form for absorbing t...

متن کامل

The new implicit finite difference scheme for two-sided space-time fractional partial differential equation

Fractional order partial differential equations are generalizations of classical partial differential equations. Increasingly, these models are used in applications such as fluid flow, finance and others. In this paper we examine some practical numerical methods to solve a class of initial- boundary value fractional partial differential equations with variable coefficients on a finite domain. S...

متن کامل

High-order unified symplectic FDTD scheme for the metamaterials

a r t i c l e i n f o a b s t r a c t Unified symplectic finite-difference time-domain (US-FDTD) Split perfectly matched layers (SPML) Metamaterials (MTMs) A high-order unified symplectic finite-difference time-domain (US-FDTD) method, which is energy conserved, for modeling the metamaterials is proposed. The lossless Drude dispersive model is taken into account in US-FDTD scheme, and the detai...

متن کامل

High-Order Symplectic FDTD Scheme for Solving Time-Dependent Schrödinger Equation

Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FDT...

متن کامل

Seismic Wave-Field Propagation Modelling using the Euler Method

Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014